원핫 인코딩은 데이터 과학에서 범주형 데이터를 머신 러닝 모델에서 사용할 수 있는 수치 데이터로 변환하는 데 널리 사용되는 기법입니다. 이 글에서는 원핫 인코딩이 무엇이며, 왜 중요한지, 코드 예제를 통해 Python에서 원핫 인코딩을 구현하는 방법을 살펴봅니다. 원핫 인코딩이란 무엇일까요? 원핫 인코딩은 데이터의 각 카테고리에 대해 이진 벡터를 생성하여 범주형 데이터를 숫자 데이터로 변환하는 프로세스입니다. 이 벡터의 길이는 데이터의 카테고리 수와 같으며, 카테고리에 해당하는 위치에는 1이 있고 다른 모든 위치에는 0이 있습니다. 원핫 인코딩이 중요한 이유는 무엇일까요? 원핫 인코딩은 여러 가지 이유로 중요합니다. 1. 머신러닝 알고리즘에는 숫자 데이터가 필요하며, 원핫 인코딩은 범주형 데이터를 숫자 ..